Simple shooting-projection method for numerical solution of two-point Boundary Value Problems

نویسندگان

  • Stefan M. Filipov
  • Ivan D. Gospodinov
چکیده

This paper presents a novel shooting algorithm for solving two-point boundary value problems (BVPs) for differential equations of one independent variable. This algorithm includes the following steps: First, a shooting step is performed, in which a guess for the initial condition is made and a forward numerical integration of the differential equation is performed so that an Initial Value Problem (IVP) solution, called a shooting trajectory, is obtained. The shooting trajectory starts from one of the boundary constraints but typically does not end at the other boundary constraint. Next, a projection step is performed, in which the shooting trajectory is transformed into a new, projection trajectory that satisfies both constraints and has the same second derivative as the shooting trajectory. The projection trajectory is an approximate BVP solution. Finally, a correction step is performed, in which the projection trajectory is used to obtain a new guess for the initial condition, and the procedure is repeated until convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs

In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.

متن کامل

‎A Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems

In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Shooting-projection method for two-point boundary value problems

This paper presents a novel shooting method for solving two-point boundary value problems for second order ordinary differential equations. The method works as follows: first, a guess for the initial condition is made and an integration of the differential equation is performed to obtain an initial value problem solution; then, the end value of the solution is used in a simple iteration formula...

متن کامل

F-TRANSFORM FOR NUMERICAL SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEM

We propose a fuzzy-based approach aiming at finding numerical solutions to some classical problems. We use the technique of F-transform to solve a second-order ordinary differential equation with boundary conditions. We reduce the problem to a system of linear equations and make experiments that demonstrate applicability of the proposed method. We estimate the order of accuracy of the proposed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014